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An efficient total synthesis of sulfobacin A
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Abstract—A short and efficient enantioselective synthesis of sulfobacin A has been achieved using the Sharpless asymmetric dihydr-
oxylation and the regiospecific nucleophilic opening of a cyclic sulfate as the key steps.
� 2004 Elsevier Ltd. All rights reserved.
Sulfobacins A and B were isolated for the first time in
1995 by Kamiyama et al. from the culture broth of
Chryseobacterium sp. NR 2993, a strain isolated from
a soil sample collected on Iriomote Island (Fig. 1).1

Almost simultaneously, Kobayashi and co-workers2

isolated flavocristamide A and sulfobacin A from the
cultured mycelium of Flavobacterium sp. These com-
pounds are novel sulfonolipids and are unusual sphingo-
sine derivatives. Biological studies of these compounds
were revealed to inhibit the binding of von Willebrand
factor to the GPIb/IX receptors in a competitive manner
with IC50’s of 0.47lM for sulfobacin A and 2.2lM for
sulfobacin B, respectively. These compounds were also
found to exhibit inhibitory activity against DNA poly-
merase a.

In the literature, the three different synthetic approaches
reported so far for sulfobacin A involve either a chiral
0040-4039/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.
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Figure 1.
building block or a chiral auxiliary to establish one or
more of the stereogenic centres present in the molecule.
The asymmetric aldol reaction of a Schiff�s base derived
from glycine ethyl ester and (+)-2-hydroxy-3-pinanone
has been utilised as the key step by Shiori et al.3 In an-
other approach, the title compound was synthesised in a
stereoselective manner using LL-cysteine as a chiral build-
ing block.4 Genet et al. have employed a ruthenium-cat-
alysed asymmetric hydrogenation and diastereoselective
electrophilic amination for the construction of the three
stereogenic centres.5

As part of our ongoing research program aimed at devel-
oping enantioselective syntheses of naturally occurring
lactones6 and amino alcohols,7 the Sharpless asymmetric
dihydroxylation (AD) and subsequent trans- formation
of diols formed via cyclic sulfites/sulfates were envisaged
as powerful tools offering considerable opportunities for
synthetic manipulation. Herein we report a new and
highly enantioselective total synthesis of sulfobacin A
employing the AD and the regioselective nucleophilic
opening of a cyclic sulfate as the key steps.

Our synthetic approach for the synthesis of sulfobacin A
was envisioned via the retrosynthetic route as shown in
Scheme 1. The cyclic sulfate 6 was visualised as a com-
mon intermediate for the synthesis of both fragments
11 and 13, which in turn could be obtained from the diol
5. The diol 5 could be derived from olefin 4 through
asymmetric dihydroxylation. The b-hydroxy acid 13
would be obtained by nucleophilic opening of cyclic sulf-
ate 6 with hydride and subsequent hydrolysis, while 11
would be prepared by the nucleophilic opening of cyclic
sulfate 6 with azide followed by a Mitsunobu reaction
with thioacetic acid.
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Scheme 1. Retrosynthetic route to sulfobacin A.
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Scheme 3. Reagents and conditions: (a) NaN3, H2O–acetone (1:10),

1.5h, then 20% aq H2SO4, Et2O, 24h, 92%; (b) (Boc)2O, 10% Pd/C, H2,

EtOAc, 4h, 98%; (c) TBSCl, imidazole, DMF, rt, 20h, 98%; (d)

Ca(BH4)2, THF, EtOH, �15�C to rt, 20h, 96%; (e) CH3COSH,
iPrOCON = NCO2

iPr, PPh3, THF, 0 �C, 1h, then rt, 16h, 92%.
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The synthesis of cyclic sulfate 6 commenced from 10-
bromodecan-1-ol 2, a commercially available material,
as illustrated in Scheme 2. Thus treatment of 2 with iso-
amylmagnesium bromide in the presence of dilithium
tetrachlorocuprate4b gave the alcohol 3 in excellent
yield. Compound 3 was oxidised to the corresponding
aldehyde under standard Swern conditions8 followed
by Horner–Wadsworth–Emmons olefination with tri-
ethyl phosphonoacetate to give the (E)-a,b-unsaturated
ester 4 in 86% yield. The dihydroxylation of 4 with os-
mium tetroxide and potassium ferricyanide as co-oxi-
dant in the presence of (DHQD)2 PHAL ligand under
the AD conditions9 gave the diol 510 in 95% yield with
>96% ee; ½a�25D +7.91 (c 1.34, CHCl3). Treatment of diol
5 with thionyl chloride and triethylamine in CH2Cl2
gave the cyclic sulfite, which was further oxidised using
OH11
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Scheme 2. Reagents and conditions: (a) Me2CH(CH2)2 MgBr,

Li2CuCl4 (1mol%), THF, �78�C to rt, 12h, 94%; (b) (i) (COCl)2,

DMSO, Et3N, CH2Cl2, �78 to �60�C, (ii) Et2P(O)CH2CO2Et, LiBr,
Et3N, THF, rt, overnight, 86%; (c) (DHQD)2PHAL (1mol%), 0.1M

OsO4 (0.4mol%), K2CO3, K3Fe(CN)6, MeSO2NH2, t-BuOH/H2O 1:1,

0 �C, 24h, 95%; (d) (i) SOCl2, Et3N, CH2Cl2, 0 �C, 20min; (ii) RuCl3,
NaIO4, CCl4–MeCN–H2O; 2:2:3, 0�C, 2h, 100%.
NaIO4 and a catalytic amount of ruthenium trichloride
to furnish the corresponding cyclic sulfate 611 in quanti-
tative yield.

Scheme 3 summarises the synthesis of thioester 11 from
6, a common intermediate for both fragments 11 and 13.
The essential feature of our strategy was based on the
presumption that the nucleophilic opening of the cyclic
sulfate 6 would occur in a regioselective manner at the
a-carbon. Indeed the cyclic sulfate 6 on treatment with
NaN3 furnished the azido alcohol 7 with apparent com-
plete selectivity for attack at the a-position. The carbo-
nyl group must be responsible for the increased activity
at the a-position.12 Compound 713 on hydrogenation in
the presence of (Boc)2O gave the Boc protected amino
alcohol 8 in essentially quantitative yield. The free hydr-
oxyl group of 8 was protected with TBSCl to give 9.
Reduction of the ester group with calcium borohydride
produced the alcohol 10 in excellent yield. Finally Mits-
unobu reaction14 of 10 with thioacetic acid afforded the
desired thioester 11 in 92% yield.

For the synthesis of b-hydroxy acid 13, the cyclic sulfate
6 was opened similarly with hydride in a regioselective
manner to give the b-hydroxy ester15 12, which on alka-
line treatment furnished the corresponding b-hydroxy
carboxylic acid 13 in excellent yield (Scheme 4).

After deprotection of Boc and TBS groups of 11 with
hydrogen chloride in dioxane, the coupling of both the
fragments 11 and 13 was smoothly achieved with diethyl
phosphonocyanidate (DEPC). The thioacetate 14 thus
obtained was subjected to pertrifluoroacetic acid oxida-
tion to achieve the target molecule 1 in moderate yield
(Scheme 5). The physical and spectroscopic data of 1
were in full agreement with the literature data.1
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Scheme 4. Reagents and conditions: (a) NaBH4, DMAC, 25�C,
30min, then 20% aq H2SO4, Et2O, 12h, 90%; (b) 1N NaOH, MeOH,

0 �C, 30min, then rt, 4h, 90%.
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Scheme 5. Reagents and conditions: (a) (i) 4N HCl–dioxane, rt, 3h,

(ii) 13, DEPC, Et3N, DMF, �10�C, 1h, then rt, 20h, 84%; (b) 30% aq
H2O2, TFA, rt, 1h, 30%.

P. Gupta et al. / Tetrahedron Letters 45 (2004) 9641–9643 9643
In conclusion, an enantioselective synthesis of sulfoba-
cin A has been realised for the first time using the Sharp-
less asymmetric dihydroxylation as the source of
chirality. Thus the results described herein constitute a
short, efficient and highly enantioselective route to sulfo-
bacin A. The synthetic strategy described here has sig-
nificant potential for further extension to the synthesis
of other analogues. Currently studies are in progress in
this direction.
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